Frontal Eye Field Inactivation Diminishes Superior Colliculus Activity, But Delayed Saccadic Accumulation Governs Reaction Time Increases.
نویسندگان
چکیده
Stochastic accumulator models provide a comprehensive framework for how neural activity could produce behavior. Neural activity within the frontal eye fields (FEFs) and intermediate layers of the superior colliculus (iSC) support such models for saccade initiation by relating variations in saccade reaction time (SRT) to variations in such parameters as baseline, rate of accumulation of activity, and threshold. Here, by recording iSC activity during reversible cryogenic inactivation of the FEF in four male nonhuman primates, we causally tested which parameter(s) best explains concomitant increases in SRT. While FEF inactivation decreased all aspects of ipsilesional iSC activity, decreases in accumulation rate and threshold poorly predicted accompanying increases in SRT. Instead, SRT increases best correlated with delays in the onset of saccade-related accumulation. We conclude that FEF signals govern the onset of saccade-related accumulation within the iSC, and that the onset of accumulation is a relevant parameter for stochastic accumulation models of saccade initiation.SIGNIFICANCE STATEMENT The superior colliculus (SC) and frontal eye fields (FEFs) are two of the best-studied areas in the primate brain. Surprisingly, little is known about what happens in the SC when the FEF is temporarily inactivated. Here, we show that temporary FEF inactivation decreases all aspects of functionally related activity in the SC. This combination of techniques also enabled us to relate changes in SC activity to concomitant increases in saccadic reaction time (SRT). Although stochastic accumulator models relate SRT increases to reduced rates of accumulation or increases in threshold, such changes were not observed in the SC. Instead, FEF inactivation delayed the onset of saccade-related accumulation, emphasizing the importance of this parameter in biologically plausible models of saccade initiation.
منابع مشابه
Modulation of presaccadic activity in the frontal eye field by the superior colliculus.
A cascade of neuronal signals precedes each saccadic eye movement to targets in the visual scene. In the cerebral cortex, this neuronal processing culminates in the frontal eye field (FEF), where neurons have bursts of activity before the saccade. This presaccadic activity is typically considered to drive downstream activity in the intermediate layers of the superior colliculus (SC), which rece...
متن کاملNeuronal correlates for preparatory set associated with pro-saccades and anti-saccades in the primate frontal eye field.
Diversity in behavioral responses to sensory stimuli has been attributed to variations in preparatory set. Variability in oculomotor responses toward identical visual stimuli has been well documented, but the neuronal processes underlying this variability are poorly understood. Here, we report evidence for set-related activity for saccadic eye movements in single neurons in the frontal eye fiel...
متن کاملCortico-cortical networks and cortico-subcortical loops for the higher control of eye movements.
There are multiple distinct regions, or eye fields, in the cerebral cortex that contribute directly to the initiation and control of voluntary eye movements. We concentrate on six of these: the frontal eye field, parietal eye field, supplementary eye field, middle superior temporal area, prefrontal eye field, and area 7 m (precuneus in humans). In each of these regions: (1) there is neural acti...
متن کاملTop-down control of saccades as part of a generalized model of proactive
23 Lo et al. (2009) describe a recurrent network model of inhibitory control of saccadic 24 eye movements based on neurophysiological observations in the Frontal Eye Field (FEF) and 25 Superior Colliculus (SC) of rhesus monkeys. This model emphasizes the proactive, inhibition26 based, tonic neuronal activity that prevents the eye from moving in a countermanding 27 paradigm. In this review I dis...
متن کاملTop-down control of saccades as part of a generalized model of proactive inhibitory control.
Lo and colleagues have recently described a recurrent network model of inhibitory control of saccadic eye movements based on neurophysiological observations in the frontal eye field (FEF) and superior colliculus (SC) of rhesus monkeys. This model emphasizes the proactive, inhibition-based, tonic neuronal activity that prevents the eye from moving in a countermanding paradigm. In this review I d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 37 48 شماره
صفحات -
تاریخ انتشار 2017